skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Bo-In"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Non-line-of-sight (NLOS) detection and ranging aim to identify hidden objects by sensing indirect light reflections. Although numerous computational methods have been proposed for NLOS detection and imaging, the post-signal processing required by peripheral circuits remains complex. One possible solution for simplifying NLOS detection and ranging involves the use of neuromorphic devices, such as memristors, which have intrinsic resistive-switching capabilities and can store spatiotemporal information. In this study, we employed the memristive spike-timing-dependent plasticity learning rule to program the time-of-flight (ToF) depth information directly into a memristor medium. By coupling the transmitted signal from the source with the photocurrent from the target object into a single memristor unit, we were able to induce a tunable programming pulse based on the time interval between the two signals that were superimposed. Here, this neuromorphic ToF principle is employed to detect and range NLOS objects without requiring complex peripheral circuitry to process raw signals. We experimentally demonstrated the effectiveness of the neuromorphic ToF principle by integrating a HfO2 memristor and an avalanche photodiode to detect NLOS objects in multiple directions. This technology has potential applications in various fields, such as automotive navigation, machine learning, and biomedical engineering. 
    more » « less
  2. The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers. 
    more » « less
  3. Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems. 
    more » « less
  4. Abstract Artificial neural networks (ANNs) are widely used in numerous artificial intelligence‐based applications. However, the significant amount of data transferred between computing units and storage has limited the widespread deployment of ANN for the artificial intelligence of things (AIoT) and power‐constrained device applications. Therefore, among various ANN algorithms, quantized neural networks (QNNs) have garnered considerable attention because they require fewer computational resources with minimal energy consumption. Herein, an oxide‐based ternary charge‐trap transistor (CTT) that provides three discrete states and non‐volatile memory characteristics are introduced, which are desirable for QNN computing. By employing a differential pair of ternary CTTs, an artificial synaptic segregation with multilevel quantized values for QNNs is demostrated. The approach establishes a platform that combines the advantages of multiple states and robustness to noise for in‐memory computing to achieve reliable QNN performance in hardware, thereby facilitating the development of energy‐efficient AIoT. 
    more » « less